• 30k-60k 经验不限 / 本科
    内容资讯,短视频 / D轮及以上 / 2000人以上
    职位职责: 1、负责抖音多题材内容的业务算法工作,共同搭建业界领先的推荐系统; 2、深入理解业务和机器学习技术,优化模型&策略,持续提升推荐效果; 3、深入理解用户行为,结合数据挖掘等技术,优化用户创作和浏览等体验。 职位要求: 1、具备优秀的编码能力,扎实的数据结构和算法功底; 2、业务思维强,具备优秀的发现问题、分析问题和解决问题的能力,对解决具有挑战性问题充满激情; 3、对技术有热情,有良好的沟通表达能力和团队精神; 4、熟悉机器学习,对推荐系统相关领域有经验者优先; 5、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神。
  • 30k-50k 经验3-5年 / 本科
    移动互联网,广告营销 / 上市公司 / 2000人以上
    岗位职责: 1.推荐系统方向的系统设计和后端开发实现、推荐策略和算法等。2.ctr server、标签系统、用户画像、内容推荐等相关方向的研发工作。3.海量用户服务架构、大规模数据平台、算法平台等相关开发和建设。 任职资格: 1.重点本科以上学历,计算机/数学相关专业;1年以上推荐相关方向研发经验。2.熟悉java或者c++,java语言优先;熟悉linux开发环境,较好的编程功底。3.对数据敏感,较强的动手实践能力、代码工程经验,逻辑思维强。加分项:1.了解nlp、特征工程、推荐系统、策略优化等。2.有大规模推荐系统架构设计和开发经验,知名互联网工作经历,有带团队经验优先。
  • 30k-60k 经验不限 / 本科
    内容资讯,短视频 / D轮及以上 / 2000人以上
    职位职责: 1、负责抖音文娱业务推荐算法工作,主要负责短剧、版权视频等文娱体裁在抖音系APP(抖音、抖音极速版、西瓜视频)的推荐分发工作,与来自国内外**名校、有丰富业界经验的同学合作,共同搭建行业前沿的推荐系统,为用户提供一流的产品体验; 2、将前沿的机器学习技术应用到抖音多样的业务场景,优化用户体验促进业务发展; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、LTR、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进抖音生态的长期繁荣发展。 职位要求: 1、具备优秀的编码能力,扎实的数据结构和算法功底; 2、对机器学习有热情、乐于学习、思考和创新,有自然语言处理、数据挖掘、计算机视觉相关的工作经验; 3、熟悉常见算法,如LR,GBDT,DNN等,具备推导,实现,应用能力; 4、熟悉C++和Python语言,熟悉Linux开发环境; 5、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神。
  • 30k-60k·15薪 经验3-5年 / 本科
    消费生活 / D轮及以上 / 500-2000人
    工作职责 业内研究表明,生成式的推荐系统存在Scaling Law现象,Scaling Law的出现相较于现有推荐系统无法通过扩充持续提升效果的现象,提出了新的可能性。该团队负责小红书生成式推荐方向,目前已经完成了原型架构的开发和线上验证,欢迎业内在推荐/广告/搜索等领域的专家一起,共同探索生成式推荐在真实业务场景的价值。 【职位描述】 1、负责生成式推荐在小红书社区推荐&展示广告场景的研发; 2、在生成式架构下,重新思考传统推荐架构中的行为建模技术(如超长序列、多兴趣等),并在召回/排序等场景中进行应用; 3、与MLLM和架构团队配合,将其他生成式模型的知识和能力迁移进实时的生成式推荐架构中; 任职资格 【任职资格】 1、3年以上工作经验,熟悉推荐系统,在召回、排序、混排中任一模块有丰富的迭代经验; 2、动手能力极强,有ACM竞赛名次或参与过业内高难度项目; 3、具备大规模场景下的创新能力,在实际业务场景中发表过高水平论文者优先;
  • 30k-45k·14薪 经验1-3年 / 本科
    移动互联网,广告营销 / 上市公司 / 2000人以上
    岗位职责: 1、负责搜狐新闻相关的算法研发、优化工作,运用策略和算法手段为用户带来更好的产品体验; 2、参与推荐系统的全链路开发与优化,包括但不局限于召回、排序、混排等; 3、通过对数据的敏锐洞察,深入挖掘产品潜在价值和需求; 4、追踪推荐领域的前沿技术,并进行模型创新,合理的运用在业务中; 任职要求: 1、推荐/搜索/广告/机器学习相关背景,有 1~3年工作经验; 2、有大规模推荐算法和系统研发经验者优先,对推荐算法有热情、乐于学习、思考和创新; 3、关注技术前沿进展,对解决具有挑战性问题充满激情; 4、较好的团队合作精神,较强的沟通能力和自我驱动力。
  • 25k-50k 经验10年以上 / 硕士
    工具类产品,内容社区,音频|视频媒体 / 上市公司 / 2000人以上
    岗位职责: 1.负责腾讯音乐集团相关产品推荐算法的设计实现与优化; 2.负责完善现有推荐系统的基础算法及并行计算框架; 3.负责音乐平台业务的基于用户/音乐特性的数据挖掘及推荐策略设计实现; 4.负责能够根据业务数据变化不断设计并调整算法策略来提升算法质量,并最终提升用户体验。 岗位要求: 1.硕士及以上学历; 2.计算机,统计,信息,数学等相关专业毕业优先; 3.扎实可靠的编程能力,精通C/C++/GO至少一门编程语言; 4.熟悉业内推荐算法及数据挖掘领域的技术热点和进展,对互联网在线音乐的推荐系统架构设计有深入了解; 5.了解Hadoop/Spark生态相关技术优先; 6.具备规模分布式数据存储与计算开发经验者优先; 7.沟通能力佳,表达能力出众者,音乐爱好者优先。
  • 25k-45k 经验5-10年 / 本科
    旅游|出行 / B轮 / 150-500人
    岗位职责: 深度参与彩贝壳推荐/搜索引擎开发,为算法团队提供工程侧支持,包括推荐系统维护,故障排查,迭代升级等。 岗位要求: 1.计算机,统计学,数学等相关专业毕业; 2.有3年以上推荐/预测算法领域实际工作经历; 3.具备良好的数据分析,模型评估能力,在推荐/预测领域有丰富的实战经验; 4.熟悉常用的机器学习算法(LR/GBDT/SVM等),熟悉深度学习的原理和实现,熟练掌握;Tensorflow/Torch/Keras等至少一种深度学框架; 5.深刻理解数据清洗,特特提取,以及机器学习,算法框架等理论; 6.具有良好的算法前瞻性; 7.积极主动,认真负责,具备良好的技术问题分析能力,团队协作能力,强烈的责任心以及抗压能力,不挑活;
  • 45k-80k 经验5-10年 / 硕士
    消费生活 / 上市公司 / 2000人以上
    岗位职责: 负责叮咚买菜搜索和推荐相关算法工作,包括且不限于NLP、特征工程、模型策略开发等相关工作; 任职资格: 1.计算机,数学或统计学相关专业硕士及以上学历 2.扎实的机器学习基础,能够运用LR、GBDT等传统机器学习模型解决实际的业务问题; 3.扎实的深度学习基础,能够运用DIN、W&D、DeepFM、PNN等模型; 4.熟练使用一种或几种深度学习框架(如tensorflow、caffe、mxnet、pytorch等) 5.熟悉Python/Java/C++/Golang等至少一门编程语言 6.有推荐系统、自然语言处理、深度学习、搜索算法等方面的算法积累者优先
  • 30k-60k 经验不限 / 本科
    社交媒体 / 上市公司 / 2000人以上
    职位描述 1. 负责探索兴趣、高热内容高效融合的个性化推荐系统,探索大模型技术在推荐系统中的应用,构建博文推荐、词推荐在同步场景的统一解决方案; 2. 负责推荐系统中多样性、偏差问题、公平性问题、用户兴趣层次等方面问题的持续分析和优化; 职位要求 1. 计算机相关专业,硕士及以上学历; 2. 扎实的算法和数据结构基础,优秀的编码能力,优秀的分析和解决问题能力; 3. 机器学习基础扎实,熟悉深度学习算法(CNN/RNN/LSTM/RL/Transformer/面向内容推荐的大规模Sparse&Dense模型等); 4. 熟悉至少一种主流深度学习编程框架(TensorFlow/PyTorch); 5. 具备优秀的学习能力和良好的团队合作精神,较好的沟通能力以及抗压能力;
  • 35k-45k·14薪 经验3-5年 / 本科
    工具类产品,内容社区,音频|视频媒体 / 上市公司 / 2000人以上
    岗位职责: 1.负责酷我音乐各业务场景推荐策略优化及算法研发; 2.通过理解用户行为,结合数据挖掘技术,快速迭代并优化用户体验,以及各项数据指标; 3.能够有效学习并落地工业界前沿推荐算法,对业务增长起到推动作用。 任职要求: 1.计算机、数学或相关专业本科以上学历,三年以上工作经验; 2.熟悉常用机器学习算法、深度学习算法,并在推荐系统/搜索/广告等有理论基础和实践经验; 3.熟悉TensorFlow、pytorch常见深度学习框架,熟悉Spark,Hive等大数据处理工具; 4.具有良好的工程实现能力,熟练掌握C/C++、Java、Python等至少一种编程语言; 5.有较好的学习能力、沟通能力、团队协作能力,积极主动,愿意接受挑战。
  • 40k-60k·15薪 经验3-5年 / 本科
    消费生活 / D轮及以上 / 500-2000人
    工作职责 业内研究表明,生成式的推荐系统存在Scaling Law现象,Scaling Law的出现相较于现有推荐系统无法通过扩充持续提升效果的现象,提出了新的可能性。该团队负责小红书生成式推荐方向,目前已经完成了原型架构的开发和线上验证,欢迎业内MLLM领域的专家一起,共同探索生成式推荐在真实业务场景的价值。 【职位描述】 1、负责生成式推荐在小红书社区推荐&展示广告场景的研发; 2、通过Post-training/RLHF等技术,提升MLLM在推荐/广告领域的表现; 3、在生成式架构下,借助MLLM来提升或重塑内容分发的效率(如冷启动/中长尾/Scaling-law等); 任职资格 【任职资格】 1、3年以上工作经验,有大规模场景的内容理解或AIGC经验(如相关性、图搜、; 2、负责过完整的MLLM项目,具有完善的业务和技术视角; 3、具备大规模场景下的创新能力,在实际业务场景中发表过高水平论文者优先;
  • 20k-30k·14薪 经验3-5年 / 本科
    移动互联网,企业服务 / 不需要融资 / 150-500人
    1. 设计、开发和持续优化广告投放算法,以显著提高广告精准度和转化效率。 2. 紧跟市场趋势和业务需求,对广告算法进行定期更新和改进。 3. 主导广告数据的深度分析和挖掘工作,确保算法优化的数据驱动。 4. 开发适应不同场景的智能出价产品,满足广告主的多元化需求。 任职要求: 1. 3年及以上算法开发经验,优秀应届毕业生亦可。计算机科学、数学、统计学或相关专业背景; 2. 熟练使用Hadoop、Spark、Pandas等数据处理工具,有AWS或GCP平台的大数据处理经验者优先; 3. 精通C++/Python编程,具备扎实的算法工程化能力; 4. 熟练使用TensorFlow/PyTorch等机器学习框架,有搜索/推荐/广告算法模型开发经验者优先; 5. 具备出色的学习能力、分析问题和解决问题的能力,优秀的团队合作精神,具有创新意识和挑战精神,逻辑思维清晰,责任心强。
  • 40k-70k 经验1-3年 / 本科
    消费生活 / 上市公司 / 2000人以上
    商业增值部是服务于美团核心本地商业客户的增值服务平台,覆盖餐饮、即时零售、医药、休闲娱乐、丽人医美、生活服务、酒旅度假等业务领域。我们致力于构建健康的本地商业生态,通过为平台客户和消费者提供符合其需求的多元、便捷、高效的商业产品和服务,帮助生态伙伴提高效率、优化经营、实现持续健康发展,推动本地商业数字化营销的发展,促进商业生态繁荣。作为本地商业的头部平台,我们为产品、运营、商务、技术、商业分析等领域人才提供广阔的发展空间。诚邀你加入美团商业增值团队,共筑本地商业的健康繁荣生态! 岗位职责 1、结合到餐业务特性、流量场景特点,通过数据分析、行业调研等方式,明确分场景的广告变现模式及阶段性产品迭代重点; 2、负责推荐广告策略设计,通过召排策略优化、创意优化、机制设计等,完成广告收入和体验目标; 3、持续探索、完善推荐方向的指标体系、评估方法,异动分析下钻框架,并推动数据基建和核心看板建设; 4、协同推荐各渠道业务产运团队、算法团队、引擎团队,建立协作机制,推动项目落地,完成业务目标。 岗位基本需求 1、至少3年流量策略产品经验,有推荐/搜索广告策略经验者优先; 2、较强的业务理解能力和数据敏感度,有一定的数据分析方法论,能熟练使用SQL; 3、逻辑缜密、沟通良好、勇于挑战、善于分析和解决问题、良好的自驱力。 岗位亮点 1、深入接触O2O广告核心业务,对于行业视野提升、效果广告能力提升均有良好的空间; 2、推荐作为重要流量渠道,能深度参与并影响业务,价值创造空间大; 3、靠谱团队,团队氛围好。
  • 旅游|出行 / D轮及以上 / 500-2000人
    我们正在寻找一名具有丰富自然语言处理(NLP)经验的算法工程师,同时需具备大模型相关的经验和知识。如果您还具备Chatbot相关的经验,那将是一个巨大的加分项。此岗位将负责开发和优化我们的AI解决方案,推动NLP和大模型技术在各类应用场景中的落地。 主要职责: 设计和优化NLP算法,提升系统的理解和生成能力。 研究和应用最新的NLP技术,解决复杂的自然语言处理问题。 开发和优化大规模机器学习和深度学习模型,提升系统性能。 与产品团队和数据科学团队紧密合作,了解业务需求并转化为技术方案。 参与大模型相关项目,推动大模型在各类应用场景中的应用。 进行数据分析和挖掘,提供数据驱动的优化建议。 编写高质量的技术文档和报告,分享研究成果和项目进展。 职位要求: 计算机科学、电子工程、数学或相关领域的本科及以上学历。 至少3年在NLP领域的工作经验。 熟悉常见的NLP技术(如分词、命名实体识别、文本分类、情感分析等)。 具有大模型相关的经验(如GPT、BERT、Transformers等)。 精通Python,熟悉TensorFlow、PyTorch等深度学习框架。 具备数据分析和处理能力,能够理解和处理大规模数据集。 良好的团队协作能力和沟通能力,能够与跨部门团队有效合作。 加分项: 有Chatbot开发和优化的实际经验。 拥有电商、金融、医疗等领域的NLP应用经验。 在学术会议或期刊发表过NLP或大模型相关论文者优先。 具有推荐系统或其他AI应用开发经验者优先。 如果你对NLP和大模型充满热情,并希望在快速发展和充满挑战的环境中成长,我们诚邀你的加入!
  • 20k-30k 经验1-3年 / 硕士
    金融 / 上市公司 / 2000人以上
    工作职责 1. 负责研究适用于医疗应用场景的统计和机器学习算法(如图神经网络、多模态数据融合、时序分析等),提高AI在疾病预测、保险理赔、医保控费、健康服务推荐等方面的能力; 2. 参与医疗AI产品的研发,与产品团队、开发团队合作完成创新技术向应用成果的转化; 3. 参与和外部研究机构的学术合作,共同研发创新AI算法; 4. 基于上述工作发表AI领域**论文,申请发明专利。 任职要求 1. 计算机、统计学、数学、自动化、生物信息学等相关专业硕士或以上学历; 2. 对人工智能和机器学习算法有浓厚的兴趣和深入的研究经验; 3. 具有丰富的算法设计与编程开发经验,熟练掌握Python或R编程; 4. 具有良好的沟通能力与多学科团队协作能力; 5. 在人工智能领域**期刊、会议上发表过学术论文者优先; 6. 在医疗人工智能领域有相关研究经验者优先; 7. 对商业保险、社会医保(如临床路径、DRGs)体系有相关经验者优先。