-
岗位职责: 1.负责腾讯音乐集团相关产品推荐算法的设计实现与优化; 2.负责完善现有推荐系统的基础算法及并行计算框架; 3.负责音乐平台业务的基于用户/音乐特性的数据挖掘及推荐策略设计实现; 4.负责能够根据业务数据变化不断设计并调整算法策略来提升算法质量,并最终提升用户体验。 岗位要求: 1.硕士及以上学历; 2.计算机,统计,信息,数学等相关专业毕业优先; 3.扎实可靠的编程能力,精通C/C++/GO至少一门编程语言; 4.熟悉业内推荐算法及数据挖掘领域的技术热点和进展,对互联网在线音乐的推荐系统架构设计有深入了解; 5.了解Hadoop/Spark生态相关技术优先; 6.具备规模分布式数据存储与计算开发经验者优先; 7.沟通能力佳,表达能力出众者,音乐爱好者优先。
-
岗位职责: 1、负责搜狐新闻相关的算法研发、优化工作,运用策略和算法手段为用户带来更好的产品体验; 2、参与推荐系统的全链路开发与优化,包括但不局限于召回、排序、混排等; 3、通过对数据的敏锐洞察,深入挖掘产品潜在价值和需求; 4、追踪推荐领域的前沿技术,并进行模型创新,合理的运用在业务中; 任职要求: 1、推荐/搜索/广告/机器学习相关背景,有 1~3年工作经验; 2、有大规模推荐算法和系统研发经验者优先,对推荐算法有热情、乐于学习、思考和创新; 3、关注技术前沿进展,对解决具有挑战性问题充满激情; 4、较好的团队合作精神,较强的沟通能力和自我驱动力。
-
职位职责: 1、负责抖音多题材内容的业务算法工作,共同搭建业界领先的推荐系统; 2、深入理解业务和机器学习技术,优化模型&策略,持续提升推荐效果; 3、深入理解用户行为,结合数据挖掘等技术,优化用户创作和浏览等体验。 职位要求: 1、具备优秀的编码能力,扎实的数据结构和算法功底; 2、业务思维强,具备优秀的发现问题、分析问题和解决问题的能力,对解决具有挑战性问题充满激情; 3、对技术有热情,有良好的沟通表达能力和团队精神; 4、熟悉机器学习,对推荐系统相关领域有经验者优先; 5、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神。
-
工作职责 业内研究表明,生成式的推荐系统存在Scaling Law现象,Scaling Law的出现相较于现有推荐系统无法通过扩充持续提升效果的现象,提出了新的可能性。该团队负责小红书生成式推荐方向,目前已经完成了原型架构的开发和线上验证,欢迎业内MLLM领域的专家一起,共同探索生成式推荐在真实业务场景的价值。 【职位描述】 1、负责生成式推荐在小红书社区推荐&展示广告场景的研发; 2、通过Post-training/RLHF等技术,提升MLLM在推荐/广告领域的表现; 3、在生成式架构下,借助MLLM来提升或重塑内容分发的效率(如冷启动/中长尾/Scaling-law等); 任职资格 【任职资格】 1、3年以上工作经验,有大规模场景的内容理解或AIGC经验(如相关性、图搜、; 2、负责过完整的MLLM项目,具有完善的业务和技术视角; 3、具备大规模场景下的创新能力,在实际业务场景中发表过高水平论文者优先;
-
职位职责: 1、参与快速增长的直播业务的推荐算法工作,包含抖音、抖音极速版、火山引擎、西瓜视频、今日头条等各端直播业务,结合大规模机器学习系统,构建业界一流领先的推荐系统; 2、优化直播在多场景、全链路的推荐核心算法&策略(召回、粗排、精排、混排等等),极致提升个性化直播分发与推荐效率; 3、深入理解用户、主播、平台等生态角色需求,通过持续技术创新与迭代,驱动用户体验、主播成长、平台营收健康持续增长,并通过直播+赋能优化各垂直行业; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进直播生态的长期繁荣发展。 职位要求: 1、有扎实的编程基础、良好的编程风格和工作习惯,扎实的数据结构和算法功底; 2、有扎实的机器学习/深度学习理论和丰富的实践经验,熟悉至少一种主流深度学习编程框架; 3、优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情;善于沟通,工作积极主动,责任心强,具备良好的团队协作能力; 4、在**会议发表论文,或ACM/机器学习等竞赛获奖,或有大规模推荐系统、计算广告、搜索引擎等核心算法业务经验者优先。
-
岗位职责: 1.推荐系统方向的系统设计和后端开发实现、推荐策略和算法等。2.ctr server、标签系统、用户画像、内容推荐等相关方向的研发工作。3.海量用户服务架构、大规模数据平台、算法平台等相关开发和建设。 任职资格: 1.重点本科以上学历,计算机/数学相关专业;1年以上推荐相关方向研发经验。2.熟悉java或者c++,java语言优先;熟悉linux开发环境,较好的编程功底。3.对数据敏感,较强的动手实践能力、代码工程经验,逻辑思维强。加分项:1.了解nlp、特征工程、推荐系统、策略优化等。2.有大规模推荐系统架构设计和开发经验,知名互联网工作经历,有带团队经验优先。
-
工作职责 业内研究表明,生成式的推荐系统存在Scaling Law现象,Scaling Law的出现相较于现有推荐系统无法通过扩充持续提升效果的现象,提出了新的可能性。该团队负责小红书生成式推荐方向,目前已经完成了原型架构的开发和线上验证,欢迎业内在推荐/广告/搜索等领域的专家一起,共同探索生成式推荐在真实业务场景的价值。 【职位描述】 1、负责生成式推荐在小红书社区推荐&展示广告场景的研发; 2、在生成式架构下,重新思考传统推荐架构中的行为建模技术(如超长序列、多兴趣等),并在召回/排序等场景中进行应用; 3、与MLLM和架构团队配合,将其他生成式模型的知识和能力迁移进实时的生成式推荐架构中; 任职资格 【任职资格】 1、3年以上工作经验,熟悉推荐系统,在召回、排序、混排中任一模块有丰富的迭代经验; 2、动手能力极强,有ACM竞赛名次或参与过业内高难度项目; 3、具备大规模场景下的创新能力,在实际业务场景中发表过高水平论文者优先;
-
职位描述 1. 负责探索兴趣、高热内容高效融合的个性化推荐系统,探索大模型技术在推荐系统中的应用,构建博文推荐、词推荐在同步场景的统一解决方案; 2. 负责推荐系统中多样性、偏差问题、公平性问题、用户兴趣层次等方面问题的持续分析和优化; 职位要求 1. 计算机相关专业,硕士及以上学历; 2. 扎实的算法和数据结构基础,优秀的编码能力,优秀的分析和解决问题能力; 3. 机器学习基础扎实,熟悉深度学习算法(CNN/RNN/LSTM/RL/Transformer/面向内容推荐的大规模Sparse&Dense模型等); 4. 熟悉至少一种主流深度学习编程框架(TensorFlow/PyTorch); 5. 具备优秀的学习能力和良好的团队合作精神,较好的沟通能力以及抗压能力;
-
推荐算法工程师(酷我业务线)
[北京·朝阳门] 17:04发布35k-45k·14薪 经验3-5年 / 本科工具类产品,内容社区,音频|视频媒体 / 上市公司 / 2000人以上岗位职责: 1.负责酷我音乐各业务场景推荐策略优化及算法研发; 2.通过理解用户行为,结合数据挖掘技术,快速迭代并优化用户体验,以及各项数据指标; 3.能够有效学习并落地工业界前沿推荐算法,对业务增长起到推动作用。 任职要求: 1.计算机、数学或相关专业本科以上学历,三年以上工作经验; 2.熟悉常用机器学习算法、深度学习算法,并在推荐系统/搜索/广告等有理论基础和实践经验; 3.熟悉TensorFlow、pytorch常见深度学习框架,熟悉Spark,Hive等大数据处理工具; 4.具有良好的工程实现能力,熟练掌握C/C++、Java、Python等至少一种编程语言; 5.有较好的学习能力、沟通能力、团队协作能力,积极主动,愿意接受挑战。 -
职责: 1.负责最右推荐产品的研发,用推荐产品/技术来提升用户体验和活跃度 2.应用机器学习、自然语言处理等技术,基于海量用户日志和内容,建立用户画像,构建内容质量及内容标签体系 3.以数据挖掘和数据分析为基础,发现新的产品改进点,驱动产品改进,探索新的产品形态; 4.跟踪业界最新的机器学习算法和研究趋势,并将其应用于实际的生产环境 要求: 1.信息检索,计算机视觉,机器学习、分布式系统方向的计算机专业的研究生或优秀本科生; 熟悉常见的分布式编程范式以及设计模式;有一定的分布式计算系统与机器学习相结合的理论和实践基础; 2.对技术研究和应用抱有浓厚兴趣,有强烈的上进心和责任感,善于思考和运用新知识; 3.扎实的C/C++和python编码功底,熟悉MPI/CUDA等高性能计算框架; 4.在ACM/ICPC, Google Jam, Top Coder,百度之星等比赛取得优异成绩的优先; 加分项: 1.思考过TensorFlow/MXNet/Caffe/Theano/Torch等的架构代码和设计逻辑的优先; 2.对大规模分布式机器学习系统实践经验者优先; 3.有发表NIPS/ACL/AAAI/ICML/IJCAI/EMNLP/SIGKDD/ICCV/CVPR/OSDI/SOSP等顶会论文的优先; 4.如果您乐于设计和实现高性能优雅的系统,而又想拥抱大规模机器学习带来的可能性,欢迎加入我们。
-
岗位职责: 负责叮咚买菜搜索和推荐相关算法工作,包括且不限于NLP、特征工程、模型策略开发等相关工作; 任职资格: 1.计算机,数学或统计学相关专业硕士及以上学历 2.扎实的机器学习基础,能够运用LR、GBDT等传统机器学习模型解决实际的业务问题; 3.扎实的深度学习基础,能够运用DIN、W&D、DeepFM、PNN等模型; 4.熟练使用一种或几种深度学习框架(如tensorflow、caffe、mxnet、pytorch等) 5.熟悉Python/Java/C++/Golang等至少一门编程语言 6.有推荐系统、自然语言处理、深度学习、搜索算法等方面的算法积累者优先
-
岗位职责: 深度参与彩贝壳推荐/搜索引擎开发,为算法团队提供工程侧支持,包括推荐系统维护,故障排查,迭代升级等。 岗位要求: 1.计算机,统计学,数学等相关专业毕业; 2.有3年以上推荐/预测算法领域实际工作经历; 3.具备良好的数据分析,模型评估能力,在推荐/预测领域有丰富的实战经验; 4.熟悉常用的机器学习算法(LR/GBDT/SVM等),熟悉深度学习的原理和实现,熟练掌握;Tensorflow/Torch/Keras等至少一种深度学框架; 5.深刻理解数据清洗,特特提取,以及机器学习,算法框架等理论; 6.具有良好的算法前瞻性; 7.积极主动,认真负责,具备良好的技术问题分析能力,团队协作能力,强烈的责任心以及抗压能力,不挑活;
-
推荐算法工程师/架构师(j29504)
[北京·大山子] 2025-05-2725k-45k·15薪 经验3-5年 / 本科居住服务 / 上市公司 / 500-2000人工作职责: 1、负责58 App各业务推荐场景的策略研发工作,优化排序与召回算法,在兼顾多目标的基础上提升连接效率 2,探索前沿推荐算法,结合业务特点对算法模型改造与创新,在实际业务场景中落地验证 职位要求: 1、硕士及以上学历,计算机、数学等相关专业,2年以上搜索、推荐或者广告等方向算法经验 2、熟练掌握常用机器学习/深度学习算法, 具备基于行为序列与多目标优化的深度学习建模能力 3、优秀的编码能力, 扎实的数据结构和算法功底,熟练使用Java、Python等主流开发语言中的一种 4、有应用tensorflow等算法平台建模的实践经验,具备基于Spark、Hive等大数据框架的数据分析能力 5、能够独立负责项目,具备良好的沟通协调能力, 优秀的推动力与执行力 -
岗位职责: 1. 设计并实施推荐算法,以提升用户体验和增加用户参与度。 2. 分析用户数据,洞察用户偏好,构建精准的用户模型。 3. 研究最新的机器学习和深度学习技术,推动算法的持续优化。 4. 与团队成员紧密合作,确保算法与业务目标一致。 5. 监控算法性能,及时识别并解决技术难题。 任职要求: 1. 熟练掌握Python等编程语言,具备良好的数据处理和分析能力。 2. 对机器学习和深度学习算法有深入理解,能够应用于实际问题。 3. 具备创新思维和独立解决技术问题的能力。 4. 能够与团队成员有效沟通,推动项目实施。 5. 对新技术充满热情,愿意不断学习和探索。
-
岗位职责: 1. 设计并实施推荐算法,以提升用户体验和增加用户参与度。 2. 分析用户数据,洞察用户偏好,构建精准的用户模型。 3. 研究最新的机器学习和深度学习技术,推动算法的持续优化。 4. 与团队成员紧密合作,确保算法与业务目标一致。 5. 监控算法性能,及时识别并解决技术难题。 任职要求: 1. 熟练掌握Python等编程语言,具备良好的数据处理和分析能力。 2. 对机器学习和深度学习算法有深入理解,能够应用于实际问题。 3. 具备创新思维和独立解决技术问题的能力。 4. 能够与团队成员有效沟通,推动项目实施。 5. 对新技术充满热情,愿意不断学习和探索。