-
岗位职责: 1.推荐系统方向的系统设计和后端开发实现、推荐策略和算法等。2.ctr server、标签系统、用户画像、内容推荐等相关方向的研发工作。3.海量用户服务架构、大规模数据平台、算法平台等相关开发和建设。 任职资格: 1.重点本科以上学历,计算机/数学相关专业;1年以上推荐相关方向研发经验。2.熟悉java或者c++,java语言优先;熟悉linux开发环境,较好的编程功底。3.对数据敏感,较强的动手实践能力、代码工程经验,逻辑思维强。加分项:1.了解nlp、特征工程、推荐系统、策略优化等。2.有大规模推荐系统架构设计和开发经验,知名互联网工作经历,有带团队经验优先。
-
职位职责: 团队介绍:抖音推荐团队,负责抖音的推荐算法,直接为抖音的核心用户体验负责,涉及内容消费,社交,直播,推送,同城,电商各个场景。我们的工作内容包括大规模推荐算法的优化、复杂约束的优化问题的解决、CV/NLP等多个学术领域的算法改进以及对多种场景的推荐架构的设计和对产品数据的复杂深入的分析。在这里,你可以深入钻研机器学习算法的改进和优化,探索前沿的技术;可以通过对产品的深度理解和思考,将算法应用到业务中去;也可以通过对产品和内容生态的深度分析,影响产品未来的发展方向。 1、负责抖音核心的业务推荐算法工作,与来自国内外**名校、有丰富业界经验的同学合作,共同搭建行业**的推荐系统,为用户提供一流的产品体验; 2、将前沿的机器学习技术应用到抖音的核心场景业务,优化用户体验促进业务发展; 3、研究方向包含且不局限于:深度学习、图神经网络、多任务学习、learning to rank、模型压缩和加速、多模态技术等,结合业务的实际问题来做好技术的探索和研究; 4、和产品、运营团队紧密合作,通过对产品和用户的深入理解和分析,制定算法策略促进抖音生态的长期繁荣发展。 职位要求: 1、具备优秀的编码能力,扎实的数据结构和算法功底; 2、对机器学习有热情、乐于学习、思考和创新,有自然语言处理、数据挖掘、计算机视觉相关的工作经验; 3、熟悉常见算法,如LR,GBDT,DNN等,具备推导,实现,应用能力; 4、熟悉C++和Python语言,熟悉Linux开发环境; 5、优秀的分析问题和解决问题的能力,有良好的沟通表达能力和团队精神。
-
职位职责: 1、每年游戏厂商会在抖音的游戏内容里投入亿级别的经营预算,用以激励创作者生产内容,该部分预算的分配与调优算法; 2、给内容创作者推荐各种资源和信息,如任务/活动/创作灵感,帮助创作者增加收入,提升创作水平; 3、优化抖音搜索中游戏垂类的效果,包括Query分析、内容结构化、排序调优等; 4、游戏类的短视频视频/直播内容理解。 职位要求: 1、有扎实的编程基础、良好的编程风格和工作习惯,扎实的数据结构和算法功底; 2、有扎实的机器学习/深度学习理论和丰富的实践经验,熟悉至少一种主流深度学习编程框架; 3、优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情;善于沟通,工作积极主动,责任心强,具备良好的团队协作能力; 4、在**会议发表论文或ACM/机器学习等竞赛获奖优先; 4、有推荐系统、计算广告、搜索引擎等算法业务经验者优先。
-
我们正在寻找一位经验丰富的推荐算法工程师,负责推荐算法的框架搭建和工程效能优化工作。该职位将主要负责TF和PyTorch框架在推荐系统中的应用,包括离线和在线训练优化、模型部署及生成式模型的实时预估。我们期待您的加入,共同推动公司的技术和业务发展。 岗位职责: 1. 离线Pipeline优化:优化TF框架的离线和在线逻辑,提升TF集群训练和GPU训练的离线pipeline资源利用率和效率。 2. 模型Serving:探索并搭建基于TF/PyTorch的Serving方案,实现推荐场景下的近线和在线预估流程。 3. 生成式模型应用:落地推荐领域的生成式模型预估框架,负责对应的训练加速和实时预估的部署。 4. 算法研发:优化工程效率,提升推荐系统的性能和效果。构建通用有效的工具和框架。 任职要求: 1. 教育背景:计算机科学相关专业本科及以上学历。 2. 工作背景:推荐算法领域3年以上的工作经验。 3. 技术经验: - 熟悉TF/PyTorch框架,具备离线Pipeline和在线Serving相应的部署和优化能力。 - 熟悉GPU加速相关技术,能够优化大规模数据的训练速度。 - 具有生成式模型应用经验,能够实现生成式模型的训练加速和实时预估部署。 4. 编程能力:精通Python编程,熟悉C++/Java或其他编程语言者优先。 5. 工程经验:具备扎实的工程能力,有大型推荐系统开发和优化经验者优先。 6. 沟通能力:良好的团队合作精神,具备跨团队沟通协作的能力。 7. 创新精神:热爱技术创新,乐于接受挑战,并能够持续学习和应用新技术。 优先条件: 1. 互联网公司推荐系统的相关工作经验。 2. 在推荐算法、机器学习或深度学习领域有高质量论文或专利。 3. 开源项目贡献经验。
-
岗位职责: 1.负责腾讯音乐集团相关产品推荐算法的设计实现与优化; 2.负责完善现有推荐系统的基础算法及并行计算框架; 3.负责音乐平台业务的基于用户/音乐特性的数据挖掘及推荐策略设计实现; 4.负责能够根据业务数据变化不断设计并调整算法策略来提升算法质量,并最终提升用户体验。 岗位要求: 1.硕士及以上学历; 2.计算机,统计,信息,数学等相关专业毕业优先; 3.扎实可靠的编程能力,精通C/C++/GO至少一门编程语言; 4.熟悉业内推荐算法及数据挖掘领域的技术热点和进展,对互联网在线音乐的推荐系统架构设计有深入了解; 5.了解Hadoop/Spark生态相关技术优先; 6.具备规模分布式数据存储与计算开发经验者优先; 7.沟通能力佳,表达能力出众者,音乐爱好者优先。
-
岗位职责: 1. 结合经验和实际场景需求制定解决方案,推进短视频推荐算法的模型和策略迭代 2. 和运营和产品紧密协作,通过用户和内容的深入分析和理解,优化分发机制促进系统生态的长期繁荣。 3. 跟踪技术和产品的前沿趋势,基于美团视频场景特点探索落地应用,产出业务价值 岗位基本要求: 1. 扎实的编程能力和数据结构基础,熟悉常用的机器学习算法,较强的业务问题分析和解决能力; 2. 自驱主动,沟通良好,有团队协作精神 3. 有大流量场景的推荐/广告/搜索落地经验; 4. 紧跟业界技术前沿,深钻特定子方向推荐技术,推进和实现子方向策略的落地
-
职责描述: 1. 基于智能电视上特定业务与场景研究合适算法模型构建精准的智能推荐系统; 2. 基于海量用户行为数据进行数据挖掘与画像建模,构建智能电视平台上的用户画像。 任职要求: 1.***本科及以上学历,3年以上智能推荐算法、用户画像算法开发与调优经验; 2.精通机器学习、深度学习算法在智能推荐、用户画像上的应用,至少熟悉一种深度学习平台(Tensorflow、 Caffe、Torch); 3.熟悉使用Hadoop,Spark,SparkStreaming等大数据基础平台; 4.具备较强的数据分析,问题分析,逻辑思维能力,良好的沟通及团队协作能力。
-
美团的使命是“帮大家吃得更好,生活更好”,公司聚焦“零售 + 科技”战略,和广大商户与各类合作伙伴一起,努力为消费者提供品质生活,推动商品零售和服务零售在需求侧和供给侧的数字化转型。 2018年9月20日,美团正式在港交所挂牌上市。美团将始终坚持以客户为中心,不断加大在科技研发方面的投入,更好承担社会责任,更多创造社会价值,与广大合作伙伴一起发展共赢。 岗位职责 1. 负责美团首页猜喜推荐排序算法的研发工作,设计和优化推荐算法模型,提高系统的推荐效果和用户体验; 2. 负责开发和维护推荐系统,包括数据采集、数据处理、特征工程等模块的开发和优化; 3. 参与团队技术讨论,提供技术解决方案和技术支持,协助团队成员解决技术难题; 4. 跟踪行业发展动态,在美团场景下落地生成式推荐,不断提升团队的技术能力和创新能力。 岗位基本需求 1. 硕士研究生及以上学历,计算机、统计学、数学或相关专业; 2. 具备至少3年以上的推荐算法开发经验,熟悉常用的推荐算法模型和技术; 3. 熟悉机器学习和数据挖掘算法,具备良好的数学基础和编程能力; 4. 熟悉使用Hive/Spark/Hadoop等大数据工具,熟悉TensorFlow/PyTorch等框架,有深度学习实际项目经验; 5. 具备良好的团队合作意识和沟通能力,能够与产品、运营等团队紧密配合,完成项目目标。 具备以下者优先 1. 有推荐业务上大规模机器学习优化落地经验; 2. 有复杂业务场景下深度学习模型的算法研发及改进经验; 3. 密切关注业界最新进展,在SIGKDD、CIKM、ICML、ICLR、SIGIR、RECSYS等顶会发表过创新性论文或调研业界论文并成功应用于实践; 4. 在Kaggle等平台上取得较大型机器学习/深度学习竞赛靠前名次。 岗位亮点 1. 美团APP首页推荐,亿级DAU、海量的用户数据、复杂的业务场景,挑战算法的极限并提升个人技术能力。 2. 具备广阔的职业发展空间,可以在推荐算法领域不断深入研究和探索,成为业内有影响力的专家。 3. 团队氛围好,专注解决算法以及用户体验问题,可以跟组内优秀同事共同成长。
-
1.基于智能电视上特定业务与场景研究合适算法模型构建精准的智能推荐系统; 2.基于海量用户行为数据进行数据挖掘与画像建模,构建智能电视平台上的用户画像。 1.***本科及以上学历,3年以上智能推荐算法、用户画像算法开发与调优经验; 2.精通机器学习、深度学习算法在智能推荐、用户画像上的应用,至少熟悉一种深度学习平台(Tensorflow、Caffe、Torch); 3.熟悉使用Hadoop,Spark,SparkStreaming等大数据基础平台; 4.具备较强的数据分析,问题分析,逻辑思维能力,良好的沟通及团队协作能力。
-
岗位职责: 1. 负责微博主站搜索业务,含搜索算法技术的研究、理解业务需求、优化搜索召回、排序效果 2. 负责智能搜索引擎相关算法开发和落地应用,涵盖智搜问答、语义搜索、内容理解、物料挖掘等 3. 负责搜索推荐前沿技术的调研与实现,研究RAG、语义检索、内容生成等技术和算法,并应用到实际问题中 4. 大规模数据挖据和分析,从海量数据中挖掘检索高质量微博与账号 职位要求: 1. 熟悉机器学习常用算法,有3年以上搜索、推荐等项目经验 2. 熟悉常用的策略算法,对数据敏感,熟悉常用数据挖掘算法 3. 熟练使用C++/Java/Python至少一门语言,熟悉Hadoop、Spark等数据处理技术,有较强的算法设计和实现能力 4. 较强的技术攻关能力,能够跟进领域内最新技术研究成果,并结合应用场景快速实验和调优 5. 优秀的分析问题和解决问题的能力,对解决具有挑战性的问题充满激情 6. 良好的沟通能力,良好的团队合作精神
-
工作职责 1. 理解保险业务+医疗健康领域的智能应用需求,设计并应用各类数据科学和AI应用技术方案,提升业务效能。 2. 追踪前沿的AI应用技术,负责具体的算法设计与开发,利用算法处理和分析保险业务流程和医疗健康数据,实现工程化落地。 3. 参加过ACM&数据挖掘&机器学习竞赛等,并取得好名次者优先;在相关领域的国际会议或者期刊上发表论文者优先。 任职要求 1. 本科以上学历,3年以上相关工作经验。(有优秀应届生亦可) 2. 负责数智化营销策略,包括但不限于:产品推荐、内容推荐、Push推送、线索挖掘等。优化模型效果,改进策略等手段,提升各类场景的点击率、转化率等,提升用户满意度 2. 具备扎实的算法基础理论,熟悉机器学习、深度学习、数据挖掘、推荐算法等各种算法知识,机器学习算法如:GBDT、XGB、DNN等,推荐算法如DeepFM、MMOE等 3. 具备良好的算法工程能力,熟练掌握Python或C++等至少一种开发语言;熟悉主流的数据平台,能熟练处理和分析大规模数据。 4. 自驱力和责任心强,积极主动,较强的沟通表达能力,能够与非技术团队成员有效沟通。 5. 熟悉保险、医学相关领域经验优先。
-
1、参与金融场景的大规模用户行为分析与建模; 2、参与个性化推荐场景算法工作,包括数据、算法和工程的全链路落地。 任职要求 1、计算机、数学或统计学相关专业本科及以上学历; 2、熟悉Linux,C++,Java和Python,优秀的编码与代码控制能力, 扎实的数据结构和算法功底; 3、熟悉大规模数据挖掘、机器学习,熟悉hadoop/hive,具备大数据查询分析能力; 4、快速学习 ,具备优秀的分析和解决问题的能力,良好的沟通协作能力。 5、实习期连续3个月以上,时间更长者优先 加分项: 1、有推荐系统、机器学习、信息检索、自然语言理解、计算广告学及算法博弈论相关领域研究及实践经验;
-
工作职责: 【岗位职责】 1、负责搜索推荐系统中算法模块的研究、设计和开发工作 2、通过召回、排序、重排等环节模型、策略的不断优化,持续提升点击率、转化率、GMV等业务指标 3、保持对业界大模型、深度学习、强化学习等前沿技术的跟进,并尝试在实际业务中落地应用 任职资格: 【技能要求】 1、计算机、数学等相关专业本科及以上学历,1年以上搜索、推荐或广告等方向算法经验 2、熟悉GBDT、DNN等常见机器学习算法,了解基本原理,具备应用实现能力 3、优秀的编码能力, 扎实的数据结构和算法功底,熟练使用Java、Python等主流开发语言中的一种 4、学习能力强,良好的团队精神和沟通表达能力
-
工作内容: 1、个性化推荐:通过数据挖掘和机器学习算法对用户兴趣偏好、画像建模,商品知识图谱构建,优化推荐算法提升推荐结果的准确性、多样性,增加用户粘性,提升用户价值; 2、机器学习算法应用:研究各类机器学习算法,包括LR、DNN、RNN、CNN、RL等算法,应用于实际场景中,实现技术驱动业务的提升; 3、算法架构和性能优化:数据实时处理,分布式机器学习模型训练,在线学习和预测,算法性能持续优化; 4、大量的业务场景:众多场景可供验证想法,影响千万级用户的购物体验; 职位要求: 1、熟悉常用机器学习算法,能够理解算法原理,并有能力研究和优化算法; 2、熟悉python、java、C++、Scala等其中一种编程技术,编程能力强,熟悉分布式计算框架; 3、有较好的数据意识,对电商推荐业务有丰富经验者优先; 4、工作主动性强,有责任心,沟通交流能力强
-
职位描述 1. 负责探索兴趣、高热内容高效融合的个性化推荐系统,探索大模型技术在推荐系统中的应用,构建博文推荐、词推荐在同步场景的统一解决方案; 2. 负责推荐系统中多样性、偏差问题、公平性问题、用户兴趣层次等方面问题的持续分析和优化; 职位要求 1. 计算机相关专业,硕士及以上学历; 2. 扎实的算法和数据结构基础,优秀的编码能力,优秀的分析和解决问题能力; 3. 机器学习基础扎实,熟悉深度学习算法(CNN/RNN/LSTM/RL/Transformer/面向内容推荐的大规模Sparse&Dense模型等); 4. 熟悉至少一种主流深度学习编程框架(TensorFlow/PyTorch); 5. 具备优秀的学习能力和良好的团队合作精神,较好的沟通能力以及抗压能力;